A two-stage estimator of the dependence parameter for the Clayton-Oakes model.
نویسنده
چکیده
This paper describes the properties of a two-stage estimator of the dependence parameter in the Clayton-Oakes multivariate failure time model. The parameter is estimated from a likelihood function in which the marginal hazard functions are replaced by estimates. The method extends the approach of Shih and Louis (1995) and Genest, Ghoudi and Rivest (1995) to allow the marginal hazard for failure times to follow a stratified Cox (1972) model. The method is computationally simple and under mild regularity conditions produces a consistent, asymptotically normal estimator.
منابع مشابه
On the Plackett distribution with bivariate censored data.
In the analysis of dependence of bivariate correlated failure time data, a popular model is a gamma frailty model proposed by Clayton and Oakes. An alternative approach is using a Plackett distribution, whose dependence parameter has a very appealing odds ratio interpretation for dependence between the two failure times. In this article, we develop novel semiparametric estimation and inference ...
متن کاملParameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance
The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...
متن کاملSemiparametric estimation of the dependence parameter of the error terms in multivariate regression
A semiparametric method is developed for estimating the dependence parameter and the joint distribution of the error term in the multivariate linear regression model. The nonpara-metric part of the method treats the marginal distributions of the error term as unknown, and estimates them by suitable empirical distribution functions. Then a pseudolikelihood is maximized to estimate the dependence...
متن کاملTwo-step Smoothing Estimation of the Time-variant Parameter with Application to Temperature Data
‎In this article‎, ‎we develop two nonparametric smoothing estimators for parameter of a time-variant parametric model‎. ‎This parameter can be from any parametric family or from any parametric or semi-parametric regression model‎. ‎Estimation is based on a two-step procedure‎, ‎in which we first get the raw estimate of the parameter at a set of disjoint time...
متن کاملUse of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lifetime data analysis
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2000